Août 2021

Les technologies spatiales au service de l'agriculture
Les technologies spatiales s'invitent dans les champs des agriculteurs ! Quelles sont-elles ? Quel est...
RECHERCHEZ parmi plus de 10 000 articles de référence ou pratiques et 4 000 articles d'actualité
PAR DOMAINE D'EXPERTISE
PAR SECTEUR INDUSTRIEL
PAR MOTS-CLES
NAVIGUER DANS LA
CARTOGRAPHIE INTERACTIVE
DÉCOUVREZ toute l'actualité, la veille technologique GRATUITE, les études de cas et les événements de chaque secteur de l'industrie.
Les fonctions à variations bornées sont des fonctions intégrables particulières dont les variations totales sont finies. Elles tiennent un rôle important dans l’analyse mathématique moderne. Cet article présente les fonctions à variations bornées d’une seule variable et de plusieurs variables, avec des exemples et des contre-exemples. Une partie est consacrée aux ensembles à périmètres distributionnels finis (i.e. les ensembles de Caccioppoli), ainsi qu’à la présentation de généralisations, extensions et restrictions. Plusieurs exemples concrets d’applications pratiques en analyse fonctionnelle, géométrie, probabilités et statistiques, physique et imagerie mathématique sont détaillés.
Cet article présente comment les réseaux de neurones peuvent être mis en œuvre pour la résolution des problèmes inverses, c’est-à-dire identifier des paramètres dans un système d’équations décrivant un phénomène physique. Les méthodes appelées « Physics-Informed Neural Network » et « Constrained Learning » d’acronymes respectifs PINN et PCL, basées sur des réseaux de neurones guidés par la physique, sont tout d’abord présentées de manière générale et ensuite explicitées et testées dans le cas d’une équation différentielle ordinaire du premier ordre, par exemple modélisant la charge d’un condensateur. Le paramètre physique considéré, représentant la capacité du condensateur, est supposé constant ou variable dans le temps. L’influence des hyperparamètres, tels que la fonction d’activation, le taux d’apprentissage et la tolérance de convergence, est investiguée en termes de précision d’identification et du nombre d’itérations (i.e., temps de calcul).
Dans cet article, nous exposons les étapes pour synthétiser une loi de commande pour un système représentant un phénomène de transfert (ou de transport). La première étape consiste à créer un modèle du système basé sur les équations régissant son comportement. On peut alors analyser le comportement naturel du système. La deuxième étape définit un point de fonctionnement souhaité, sur lequel les trajectoires doivent être. Enfin, la troisième étape porte sur la conception d’une loi de commande assurant la stabilité du point de fonctionnement. Diverses méthodes, telles que la méthode des caractéristiques, l’approche fréquentielle, la méthode de Lyapunov ou le backstepping , sont présentées.
TECHNIQUES DE L'INGENIEUR
L'EXPERTISE TECHNIQUE ET SCIENTIFIQUE
DE RÉFÉRENCE
Avec Techniques de l'Ingénieur, retrouvez tous les articles scientifiques et techniques : base de données, veille technologique, documentation et expertise technique
Plus de 10 000 articles de référence, fiches pratiques et articles interactifs validés par les comités scientifiques
Toute l'actualité, la veille technologique, les études de cas et les événements de chaque secteur de l'industrie
Automatique - Robotique | Biomédical - Pharma | Construction et travaux publics | Électronique - Photonique | Énergies | Environnement - Sécurité | Génie industriel | Ingénierie des transports | Innovation | Matériaux | Mécanique | Mesures - Analyses | Procédés chimie - bio - agro | Sciences fondamentales | Technologies de l'information
ACCUEIL | A PROPOS | ANNUAIRE AUTEURS | EXPERTS SCIENTIFIQUES | PUBLICITÉ | PLAN DU SITE | MENTIONS LÉGALES | RGPD | COOKIES | AIDE & FAQ | CONTACT
PAIEMENT
SÉCURISÉ
OUVERTURE RAPIDE
DE VOS DROITS
ASSISTANCE TÉLÉPHONIQUE
+33 (0)1 53 35 20 20